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W SUMMARY

The maximum likelihood estimator of a distribution function with
monotone failure rate is derived based on a set of observations subject

to arbitrary right censorship. This estimator {s defined everywhere on

the positive real line while the Kaplan-Mefer estimator may not be. The small sampl

properties of this estimator are indicated by results of a Monte Carlo

g~
study for the Weibull distribution.

\
\
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INTRODUCTION

1.

In life testing or survival studies, the observation of the time of
occurrence of a failure or death may be prevented by the occurrence of
some other event, resulting in a loss of an item or individual from the
study. 1In this type of censoring, only the time of loss can be observed
when the loss occurs before the death of the {tem. The problem of
nonparametrically estizating a survival function fromw such censored data
has received much attention in the recent statistical literature. Breslow
§ Crowley (1974) and lLagakos (1979) have given excellent reviews of this
sublect.

3

Specifically, we consider the following. Let X‘. Xz. o X; be the
true survival times of n jtems or individuals which are censored from the
right by a sequence t}. tz. BT tn wvhich may be either constants or random
variables, It is assumed that the x; are independent, identically
distributed random variables with a common unknown cdistribution function

F(t). wWwe wish to estimate the survival function F(t) = 1 - F(t) = Pr{x'>t)

based on observations consisting of a sequence of pairs (x‘.ﬁ‘), vhere
1 4f Xg s Ug
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3. = -tnzxt.l‘) and 61 - ; ;
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Thus, 1t is known which observations are times of deaths and which ones
are times of losses (censored).

One of the most popular estimators of F(t) is the product limit
estizator ;(t) proposed by Kaplan & Mejer (1958), which was shown to be
self-consistent by Efron (1967). Breslow & Crowley (1974) gave a rigorous
derivation of the large sample properties of the product limit estimator.

Another method of deriving the product limi: estimate in a maximum




likelihood framework considered by Nelson (1969) and Breslow (1972, 1974)
was to restrict the set of distribution functions to those having a hazard
function which was constant between the distinct uncensored failure times.
The product limit estimate is a step function and is not well-defined when
the largest observation is a loss. To improve on this situation, Susarla
5§ Van Ryzin (1976, 1978) and Ferguson & Phadia (1979) proposed nonparametric
Baves estimators which are defined everywhere, use all of the censored and
uncensored observations, and result in smoother estimates thanm the product
l1imit estimate. Susarla & Van Ryzin's (1976) estimator still has jumps
at the uncensored faflure times, however.

Cox (1972, 1975) proposed the proportional hazard model with covariate
variables and used the partial likelihood principle to analyze survival
data.

In many situations, the life distribution F(t) may be assumed or known
to have a monotone hazard or failure rate function (Barlow & Proschan (1975)).
For uncensored data, Grenander (1956) derived maximum likelihood estimators
for the failure rate function r(t) and F(t) assuming only that r(t) is
{ncreasing. (Throughout the paper we write "increasing” for "nondecreasing'.)
The consistency and asymptotic distribution of this maximum likelihood
estimator were established by Marshall & Proschan (1965) and Prakasa Rao
(19/0), respectively.

In this paper we obtain the maximun likelihood estimator i(t) of F(v)
under the condition that F(t) has a monotone failure rate based on a set
of observations subject to arbitrary right censorship as described
previously. This maximum likelihood estimator is continuous and well-deflined H

for all t > 0. 1In Section 3 an example is presented, and in Section & an

b et ettt — . .-«J




indication of the small sample properties of %(t) as compared with ;(t) is
given, resulting from & Monte Carlo study for several Weibull distributions
with increasing failure rate functions. The estimator é(t) performs very
well in the tails of the distribution and for samples under rather severe

censorship.
2. THE MAXIMUM LIKELIHOOD ESTIMATOK

Let (xl.é ), 4 =1, ..., n denote the sample described in Section 1,

i
and let f denote the common probability density function of the x;. Assume

UL Pn are either constants or independent random variables

which are also independent of x'. AT x;. Then the likelihood function

that U

can be written as (Lagakos (1979))

n 61 1-¢
Lo iltx. .8 ): £ o1, coooml= 0 {1lx)} “{Fx))
> el bl | i

i

Let the failure rate function be r(t) = £(t)/F(t). 1t follows that the

likelihood function is

n 6! <
L= B irixn.)} - 7 0 A (2.1)
i |
=1
and since
- P t %
F(t) = exp:-/o r(u)du}, t 2 0, (2.2)
wve can vrite from (2.1)
n n l‘
InLe § 8 Inrix) - ¥ [ 7 r(ude. (2.3)
o1 1 ST T

Without any loss of generality, assume that Xy S Xyt e L We also

assume that r(t) is increasing. Consider the failure rate function




" < @ -
r(t) = r(x, ), Xy €8 <Xy {1e1, ..., n-1

Then for each t, r(t) 2 r*(t), and from (2.3), we obtain

n n !x1 £
InLs ! & 1nor(x) - Z r (u)du
=) 3 e
{_) n-_l
- ) é‘ in t(xl) - 1 (t\-l)(x“l - xl)r(x‘)
{e] i=]
: 1ln L*

Denote the distinct uncensored fallure times by Tl < Tz S P, o Tk'

vheire k is the number of 61 wvhich equal one. Let A, denote the nusber of

3

losses which occur in the interval ITJ. T)#l)' including any losses at Tj

but not at T)ol' §J=0,1, ..., k, where To = 0 and kal e o Let the

times of the A) lueses be denoted by L:j), g 3. Ry iy Aj'
Since r(t) is increasing, r(L:j)) 2 r(Tj). Ew X iss X, (for each

A that is not zero). Therefore, for each 3, 0 < § < k, we have

3

Ao+_.:¢AJ+j
- 1 (n-1)(x - x )r(x,)
i+l i i
1 AO""*AJ-X*J

: vire 92
= <ln - Aot W 40IET - T)r(Ty)

3
1)

G 4} R L )
{n : (Aoo...olj_IOJol))(Lz Ll r(L
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r ¢ $3) 1)
s =1L *...+LA1 ) + {n-(l°+...+AJ+j))Tj‘l

ke - (Ao*"'*AJ-I‘J))TJ] r(TJ).

replacing -t(L:O)) by zero, t = 1, ..., AO' Hence
k k [ 1]
m1l*s § law(r) - ¢ . r(T’) - 1n L, (2.4)
31 =

where

) (S
’ L1 0...¢LA) + {n- (X0¢...4\50J)‘T

- aln = 0
a {n ~ ( 00...¢AJ_I¢)))T

i+l

g w 1, sy ¥k,
T B

(k) (%)
l L 0...‘LAR A ek

Now, the problem of obtaining the maximum likelihood estimator of r(t)

subject to the condition that r(t) is increasing is reduced to that of

maximizing ln 2 given by (2.4) subject to the constraint

'(Tl) < r(TZ) L nos % r(Th). Let v: - r(T}). 4 =1, ..., k. Then we wish to
obtain
b
max { { lny, - ! &y}
jo) I g ¥ (2.9

subject to Y < ’2 S aee S Y
We note that if for some }j, . = 0, then the function C(’l’ R ’k) -

= lj y’) is not bounded. However, when § ¢ k,

13
T ny
j=1




T —

(3 (1)
aj > Lx *...+ij + {n-(xo+...+AJ*J))T

-{n-(koo...oaj_l+j))rj

b

- LP)*..JL;J) -~ AT 20.
b
Therefore, only a, can be zero and this occurs when there are no censored
observations larger than Tk' the largest uncensored fajlure time. If iy " 0,
it 1s impossible to obtain a maximum likelihood estimator of r(t) directly
by solving (2.5). Consequently, we first consider the subclass Fu of
distributions F with corresponding fajlure rate functions bounded by a
constant M. Folliowing the argument of Marshall & Proschan (1965) and

utilizing the results of Barlow, Bartholomew, Bremner, & Brunk (1972, p. &4),

the saximum likelihood eatimator of r(t) for F « F“ is given by

?‘(r ) = min [ min max {(sl--\:)/(r"1<t...ﬂ"l )}, M] (2.6)
n 1 u v-1
v>i+l u=«i
wvhere r, = Mand r,Z = n-l, §el,2, ... k=1. Letting M =+ = §pn (2.6), we

K b}

obtain the maximum likelthood estimator of r(t) for F as

1
;(t) - ;n(Tl)' T st Thl’ L& 3y 2y anay B=l (2.7)
rn('rh). Tk st
wvhere
;n"i) = min max ((v-uyc;IO...Or;ll)). £® 3y eriy Bl

v2i+]l usi

-

and ru(Tt) - -,




1 s ¢ 0, the solution of (2.5) is obtained by applying the results
of Barlow, Bartholomew, Bremner, & Brunk (1972, p. 44). In this case, the

maximuz likelihood estimator of r(t) is given by (2.7) where

r,(T) = =min max {(v-u)/(r;l+...+t;il)). X
vi+l usi
and 'j - a;l. S Y Ee ey s

In either case, the maximum likelihood estimator of i(t) is obtained

from equation (2.2) as

F(t) = exp (-]; r(u)du}

o« axp [ -f r (T,){win (¢, T,,,) -T,}], t 20, (2.8)
0l { ’

i+l
4 . > (O }
& G ) 0.11 t

wvhere To « 0 and Tk#l = ®  We note that this estimator of the survival

function is well~defined for all t - 0, is & smooth function, and approaches

-~

since r (T ) = =),
n k

zero as t + = (it a_ = 0, F(t) = 0 for ¢t = T

k k
Similar techniques can be applied for the case that F has decreasing

fallure rate.

3. AN EXAMPLE

We use the data given by Kaplan & Meier (1958, p. 464) and alsc used
by Susarla & Van Ryzin (1976) to obtain an estimate of the survival function
from the maximue likelihood procedure in Section 2. The ordered data are
+ + +

0.8, 1.0°, 2.7%, 3.1, 5.4, 7.0%, 9.2, 12.1% months, where + denotes & time

of loss. In our notation 6‘ « 1, 4=1, 4, 5, 7 and 51 .0, 1«2 3, 6,8,

vith T, = 0.8, T, = 3.1, T, = 5.4, and T = 9.2. Also, /=0, X, - 2,
3 TR n ) (2) (3)
Ay® 0, Ay i w1 withl, 1.0, L, 2.7, 1, 0, L;°" = 7.0, and




L1 12.1. The n’ are then .l 13.6, ., ., 9.2, and -, 2.9.

(Figures 1 and 2 about here)

~

Figure ] shows the estimate rs(t) of the failure rate function. We

~

note that since a censored value was observed larger than TL' rs(t) is

finite for all t. Figure 2 gives the estimates of the survival curve using
F(t) given by (2.8) and P(t), the product limit estimate. These results
can be compared with the nonparametric Bayes estimate for the same data

given by Susarla & Van Ryzin (1976, p. 900). We remark that to obtain the

nonparametric Bayes estimate, the parameter @ of the Dirichlet process prior
must be chosen. Susarla & Van Ryzin (1976) indicate the effects of three

choices of 3 on the!r estimate.
4. SMALL SAMPLE COMPARISONS

we have performed Monte Carlo simulations for the Weibull distribution
in order to obtain the small sample behavior of the estimator é(t) as
compared with the product limit estimator ;(t). The simulations were based
on 2000 random samples each of size n, (x'b. from a Weibull distribution

1
with survival function F(t) = oxp(-talﬂ), t 2 0, with right censorship.

The censoring random variables Ul. Sty Un were chosen to be independent
of the X; and independent, identically distributed as uniform on (O.TC).

where T, was the Sth percentile of the Weibull distribution. For example,

<

when { = 75, we obtain on the average 25. censoring in the samples (censoring

fraction 0.25).

The average squared error of the estimates was computed from the 2000

trials for various values of @ > 1, n, and censoring fractions. Table 1 shows
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(Table ) about here)

some of the results. As anticipated, the performance of F improves as the

censoring becomes more scvere, as U increases, and as n incrcases. Compared

with P, F does much better in both tatle of the distribution, and perforus

as wvell as P in the center based on the mean squared errur. This {s not

surprising for the upper tail, howevei, since P {s not well-defined when

-

the largest observation i{s a loss. In the simulations, we defined I (t) to

be the constant P(Tk) for t > 1T Kesults similar to Table 1 were also found when

e
uncensored saaples were used; that is, the estimator of Grenander (1956)
and Marshall & Proschan (1965) behaves in the same manner as indicated by

Table ] when compared with the product limit estimator (which is one minus

the empirical distribution function for a complete sample).
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